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Two Prandtl-type integrodifferentlal equations are solved exactly, one equation arising from the 

antiplane problem for an elastic layer, one of whose boundaries is rigidly attached, the other boundary 

being rigidly attached everywhere except along a section where it is elastically attached, the other 

equation arising from the plane problem of a strip-shaped membrane uniformly extending at infinity 

and strengthened by elastic inclusions. In both cases the integral equation leads, with the help of a 

Fourier transformation, to a vector Riemann problem, which reduces by a method similar to one 

presented earlier [l] to an infinite Polncar&Koch algebraic system. Explicit formulae are found for the 

system unknowns together with recurrence relations that are convenient for numerical implementation. 

Computational formulae are found for the axial forces at the ends of the stringer, together with 

taqential contact stresses and their intensity factors. In the neighbourhood of the ends of the stringer 

an asymptotic expansion for the contact stresses is constructed, which, besides powers of radicals, 

contains products of radicals ln integer powers of logarithms. Numerical results arc presented. 

AN INTEGRODIFFERENTIAL equation arising from the plane problem of the extension of a strip 

with covering was solved approximately in [2] using an asymptotic method and the method of 

successive approximations. The equation of the Prandtl problem for the contact of a half-plane 

with an adhesive covering was reduced [3,4] to an infinite algebraic system with a power-law 

decrease of the elements of the system matrix. This equation was solved [2] by an asymptotic 

method. 

1. THE PRANDTL-TYPE EQUATION FOR AN ANTIPLANE STRIP PROBLEM 

Consider the following harmonic problem for a strip 

Aw(x,y)=O, lxk=, Ocycb 

w(x,O)= 0, x iz (04); w(x,b)= 0; 1x1<= 

(w - Poti 1 wyzo =fo(x), O<x<a 

(l-1) 

(1.2) 

(1.3) 

Here p, > 0 and j,(x) is Holder’s function. 
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We extend the first condition of (1.2) over the entire real axis 

W~~~O~ =x0(x), 1x1 < -5 s~~p~~(~~ tI f0.a) 

and apply a Fourier transformation to problem (l.l), (1.2). The implementation of condition 
(13) leads to the Prandtl integrodiffetential equation 

with the additional condition x(O) = x(X) =: 0, where 

With the help of the single-sided functions &(t) and the functions s(t) and J(t) possessing 
the properties 

SUPP x+ c [k=-h suppx_ c (-901 

x*(0 = 
1 

r(t)* 0% rah f(r), Osrdh 

0, tT(o,h) Y f,(r) = O 
9 rZ(O,k) 

we extend ISq. (1.4) over the entire axis 

We introduce the Fourier transforms 

The facet e(a) and F*(a) are entire, and #:(a) are analytic in @ : ImaSU. A~ly~g 
a Fourier transformation to Eq. (1.5) and using the relation 

@r(a)= P%;(o) 

we obtain the fo~~g vector Eemann problem 

G(a)~fta)=F*(a)+e*‘~~,:(C1)+~~(a), la(<m 

G(a)=l+nactha 

We factorize the function G(a) 

G(a) = K+ (a)X’ (a) K”(a) X-(a) 

K*(a)=(,,)wr(l,iaIR)[r(HliOl/lE)]-I 

(1.6) 

(1.7) 



Au efficient solution of Prandtl-type iutegrodiffemntial equations 549 

Go(a)= l+(pa)-' tha, ind GO (a)=0 
(-*.,+4 

and solve the jump problem 

o:(a)-o;(a) = F*(a) @N = 
F*(x)& 

K'(a)X'(a) l KT(x)Xr(x)(x-a) 
(l-8) 

We rewrite boundary condition (1.6) in the form 

Kf(a)Xi(a)aq(a) - ef’” [G(a)]-‘K*(a)X*(a)~:(a) r &a)= 

=[K’(a)Xr(a)}-‘~:(a)Tw~(a), Ial<= (1.9) 

The function G(a) = 1 +pactha has a denumerable set of zeros a, = U& E C (n = 1, 2, . . .), 
where all the fi,, are real and have the asymptotic form & = rc(n - J$) + o(l), n + =. To remove 
the poles of the function [G(a)r’ we remove from the left- and right-hand sides of (1.9) the 
function 

‘y*(a)= 2 iA,f 
4 a&@, 

(1.10) 

and require that the conditions 

res (-eki* 
a=*+, 

[G(a)]-'K*(a)X*(a)@i(a)-P'(a))=0 (n=1,2,...) (1.11) 

be satisfied. 
Subsequent use of Liouvihe’s theorem leads to formulae giving the solution of the Riemann 

problem (1.6) 
-id 

@;(a) = e Gca)K7a)X-(a)[Wa)+ Wa)l+ Y+(a)-o:(a) 

K-(a)X-(a) 

Wa)=eia@i(a), @2f(a)=K*(a)X*(a)[Y*(a)n&a)] (1.12) 

Substituting formulae (1.12) into conditions (l.ll), we arrive at an infinite Poincart-Koch 
linear algebraic system 

f.f = -d(MP,X A,, = K,fXiG;', G, =p&, -(~+l)ctg~, 

the solution of which is given by the recurrence relations 

(1.13) 

(1.14) 

(1.15) 

From this we obtain 
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which ensures that the series (1.10) converges in the C* half-planes. 
With the help of an inverse Fourier transformation we find the solution of Eq. (1.4) 

~(r)=-t - + 2n _j a, (a)~-‘%a 
0 

Substituting expression (1.12) for CpI into this last expression, applying the theory of 
residues and using relations (1.18) and (1.13) we finally obtain 

(1.16) 

We obtain an explicit solution for system (1.13) for the case f(x)= 1. Then 

F+(a) = (e’& - l)(ia)-’ 

and it is not necessary to solve the jump problem (1.8). Formulae (1.12) acquire the form 

Q:(a) = ig,a-’ f Y-(a) eia 

K+(a)X+(a) 
+ -K+(a)X+(a) 

G(a) 
g + Y+(a) 1 

Q$fa)=*ia-‘+K*(a)X*~a)~~ig~~-l +Y*(a)] 

g1 = [K*(0)X*(0)1-’ = @+-17% 

(1.17) 

The ~~~~en~ fn’ are given explicitly, without quadratures f;: = Tp;‘g,. As a result of this 
relations (1.15) simplify 

*A; = A,,, i a: = a,, a,,o = A,g,p;’ 

k-0 j=l Pn+Pj 

From this we find an explicit expression for the coefficients akP 

aP=A,gl 
A, 

-<p,+p,>fi, 

+ pi2 (++I 
m=l 

y’ h, =y h2 *., “‘;g;’ 
j&-t jpl 

B :-,“(m; 
a(m) j, + Oh) 

) I 
a(m)=p-j, -...-j, (m=1,2 ,... ), o(O)=p, j. =n. 

(1.18) 

(1.19) 

hm = @j,,,_i + pj, )-’ A;, ewwBim 

In the case under consideration the quadrature in (1.16) does not have to be calculated, and 
the solution of Eq. (1.4) for f(t) = 1 has the form 



2. EXTENSION OF AN INFINITE ELASTIC STRIP ALONG A STRINGER 

Suppose that an elastic strip II (I x I< 00, I y I< b) with modulus of elasticity E and Poisson’s 
ratio Y is reinforced by a stringer S = (IX I< a, I y Icj$‘h} (a thin elastic rod with no bending 
stiffen) with modulus of elasticity E,, and is stretched at infinity by ~ifur~y distributed 
forces of strength Q- In a plane stressed state it is required to determine the tangential contact 
stresses (the normal ones v~shing) and the axial forces at the ends of the inclusion. 

From the stringer equilibrium equation we obtain an expression for its horizontal 
deformations 

The equilibrium conditian for the inclusion has the form 

where T,(X) are the ~known ~gential contact stresses at the upper and lower sides of the 
inclusion, and PI and P2 are ~kno~ axial forces at its ends X=-G and x= a, respectively. 
Because of the symmetry of the problem, 4 = 4 = P, z+(x) = -Z_(X) = ~T&x). 

We will apply a model [S] fur the contact between a string and a strip, according to which the 
horizontal deformations E$. and E,(x, 0) of the stringer and the homogeneous elastic strip, 
respectively, are equal, the strip being loaded over the interval (-x, x) of the x axis by shear 
stresses z,(x) and also by forces at infinity. These strip deformations have the form 

where U(X, y) is a stress fixation satisfying the following bo~da~-value problem 

the sulution of which is constructed by means of Fourier transformations. We have 

Bearing in mind the contact conditian E(@(x) =E,(x, 0), Ix lea and introducing a new 
unknown function 

(231 

we arrive at the integr~ifferenti~ equation 
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EohKo 
P=F’ sinatda (2.4) 

with additional conditions 

x(O) = x(a) = 0 (2.5) 

which follow from equalities (2.3) and (2.1) (4 = P2). 
Following the scheme of Sec. 1 (the case when f(n) =l), Eq. (2.4) reduces to the matrix 

Riemann problem (1.6) where 

G(a)= l+ua 
ch* a + Kla2 + IC* c*ia - 1 

shacha+a ’ 
P(a)=+- 

ia 

The factorization of the function G(a) is governed by formulae (1.7), where one must take 
G,,(a) to be 

tha + (K,a* +K2)tha-a 
Go(a)=l+- 

ua shacha+a 

We will investigate the transcendental equation G(a) = 0. The functional G(a) has no real 
roots, and on the imaginary axis there are two symmetrically positioned roots tipI such that 
when u+m, PI +O, whereas when f.t+O, PI +=. Furthermore, the function G(a) has a 
denumerable set of complex roots Ita, EC*, a, = $I,,,, gMj =X[b,,, -(-l)‘ia,] (m= 1, 2, . . . ; 
j=O, 1). Then umbers z,,, = a,,, +ib,,, are roots of the equation 

shz+z+~(j&hz+~+j+$K,z2+K2)=0 

and are computed using the iterative formula 

z(‘) = 2xni + lncp(zy-‘)) II (k = 2.3, . ..). 2:’ = 2nni 

v(z,=(l+-$[-K,z* -2(1+2Kz+;)+(;-+-‘] 

from which we obtain 

z, = 2xni + ln[4x*n*K, - 2(1+ 2K2 + 2p-I)]+ 4 1). n + = 

The solution of the matrix Riemann equation has the form (1.17) where 

& = (1+ 2pK;‘)-’ 

The coefficients A, are determined by relations (1.18), (1.19), and A, is given by formulae 
(1.14) where one takes 

G, = p?,,[-COS* 0, + p,, Sin 2&, + 3K#f - K2 + 2e,P, COS* p,(COS* p,, -K& + K2)]. 

e, = (sing, cosp, + p,>-’ 

The solution of Eq. (2.4) has the form (1.20). On the basis of (2.3) and (1.20) we obtain a 
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formula for the contact stresses 

We will analyse this formula as x + -a+ 0. To do this we will first study the behaviour of the 
function @T(u) defined in (1.17) as a + 0 (0 c arg a < x). We have [6] 

If a+~ in the domain C’ and also la-@, I>& for 
1,2,..., then as a consequence of (1.10) 

A@) A(‘) 
Y-(a)=--- 

i a (-ia)’ 
+o 

a + -3 Iiug(-ia)l < f (2.6) 

any sufficiently small E > 0 and any n = 

+Q=; A(‘) = z,B” A,,, (2.7) 

We will consider the behaviour of the function [X’(u)]” at infinity. We represent the 
function G,,(x) in the form 

G,(x), G,(x) = 1+ 
@,x2 +Ic,)lhx-x 

(sh x ch x + x)11+ Qu)-’ rh x] 

and also take into account the asymptotic expansion of the integral 

$Tln 
( 1 - 
l+$ x2+Fja)2 = y + “+o(-.$) 

ia 

a-_)-, larg(-ia)l<x/2; ito =+“(l+g_-# 
Based in (1.7) we obtain the result 

1 

X+(o) 
= 1 + M-N 

Icpia 

1 +z+ g- f $2 In’(-ia) 
ml2 (-ia)” krO 

(2.8) 

which defines the coefficients c klj. Substituting the expansions (2.6)-(2.8) into (1.17) we obtain 

1 -it&(a) - (-ia)-K z - 5 cd Id(-ia)+ o(a) 
m=~ (-ia)” trO 

a+-, larg(-ia)lcrc/2 

coo = @(gI - A(')) , c 1o =-(x/8+u,)coo -p-HA’1’, c,, =-q-x 
(2.9) 

The function w(a) decreases like (-ja)-l’zeti as a + 00 (a EC’). The numbers c,,,, (m r 2) 
are expressed in terms of the coefficients of expansions (2.6)-(2.8). Bearing in mind the values 
of the integrals 
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(k=U,f) 

j&l zeia5dz = 
0 

xx [y(S)-‘“(-‘a)]. lxg(-ia~l<; 
2(-ia)% 

(V(W) is the psi function), and a&o the relation 

-ia@: (a) = i x’(7) elEL5b 7 
0 

and formulae (2.9), we obtain a representation of the function x’(t) in the neighbourhood of 
thepoint #=O 

The remaining coefficients DA (m B 2) are computed in terms of the cnrk. The function f2(t> 
is infinitely differentiable in the interval [O, X.1 for all h, < X and has the form 

Using relation (2.3), we obtain the asymptotic expansion 

(2.10) 

+~~or(x~u~~b]~~.*~~, x+-a+8 
A similar expansion is obtained in the neighbourhood of the point x= 1~. We define the 

stress intensity factors 

K&U) = x~~ToE2wX)lXT+(X~ 

and from the expansion (2.10), using the oddness of the function z+(x), we find 

We obtain a formula for the axial force P from the relation [2] 

lr12 
p = f iq +o,~~Jwy = 

-hl2 

=qh+2[SU/Z)y(a,h/2)-av/~y(a,O)I (2.11) 

Let U&) be the Fourier transform of the function U(x, y)+ Then, from the solution of 
problem (2.2) we have 

abP.eiaorlP; (ah) ((y-b)[2chay-(l+v)abshayl+ 
2(sh 2ab + 2~~5) 

+a-*sha(y-b)f2chab-(v-1)ayshabl) 

~u~t~tuting the last expression into (2.11) and using (2S), we find that 
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P = qhjl+ R)-’ (I+ E&-‘R) 

R = +_j wiq(a)r(a)da 
* 

r(a) = (sh2a+2a)-1{(ho-l)f2ch~0a-(1+v)a:shhaa]+ 

+cc-‘sh(h,-l)af2cha-~,(v+I)orsha]~, h* = h(2b)-’ 

To compute the integral (2.12) we use: the relation 

and obtain 

eviaa i T+(x)eiw dr 
--Q 

(2.12) 

(2.13) 

We wili improve the convergence of the series (2,13), We have 

Ai = )r; Q.&,)-&j1 -A(')) + O(n+ ln n), n -+ ~0 

and arrive at a computationally more convenient relation (where &) is the Riemann zeta 
function) 

d,, = a-‘A;R,, + f&i=% Q = &&-~ro(q, -A”‘) 

Note that the coefficients B, = eqmA, can be computed not only with the help of formulae 
~1.18) and (1.19), but also by the following iterative fo~ulae 

B”‘L=L\, 
e-% 

n 
& _ 2 _ 
9, 

B(f-1) 

m=l fL+tL m 1 (k = 2.3,...), B;‘) = v 
It 

where @ is the kth a~ro~~t~o~ to the coefficient I$. 

Numerical eakulations performed for the problem of the stretching of an infinite strip with an elastic 
inclusion. Below we give the values of the dimensionless quantities P” = Iit(‘P (P being the axial force 
at the end of the stringer) and 8’ = 2(qh)“P, in the case when v = 03, h = 2.ub-’ = 10, and h, = h(Zb)-’ = 
0.01 for some values of k = E,E-’ 

> 
0.1 1 2 5 IO 100 1000 

1.54 2 298 3.60 4.98 13.4 19.1 
0 

h 
1.34 0 -152 -6.40 -1x0 -187 -1981 

T&Ie I gives the values of the function %0,(x)= -lO’R~%+(.x) for some vahtes of x and k, Go~espond~g 
to the same vahres of v, h and h,_ 



Yu. A. ANTIPOV 

TABLE 1 

a-b k = 0.1 2 10 100 

0.1 -0.001 a.029 -0),030 4.19 
0.3 -0.006 -0.067 0.815 21.3 
05 0.065 1.65 13.0 80.7 
0.7 0.901 18.8 96.7 275 
0.9 11.1 235 956 1140 
0.95 47.4 999 2915 2106 
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